研究開発に見た遠回りの結論にあきれる -水素エンジンと点火装置-


2014年10月11日土曜日

不定期連載 数式を使わない、クルマの走行安定性の話・3/17


子供のローラースケートで間違えたセッティングをした

あまりにもお粗末な結論のために、日本車の操縦安定性に対する研究は、大幅に遅れることになったといえよう。ここで、もし基本的に、クルマの設計が悪いという結論になっていたとしたら、もっと早い時期に、まともなクルマになっていただろう。これがチャンスだったのである。

さらにおもしろい話を聞いた。いつ頃であったか忘れたが、日本のタイヤメーカーがメルセデスのバス用タイヤを造ることになったとき、これまでの日本のクルマメーカーから言われたことを重点にタイヤ造りをするつもりで、操縦安定性もその中に盛り込んだところ、メルセデスは「操縦安定性についてはこちらが性能を出すことで、タイヤメーカーが口を出すことではない」と、しかられたそうだ。そのタイヤメーカーに対して要求したことは、耐摩耗性と排水性(耐ハイドロプレーニング)であったそうだ。

ごく身近なところにもタイヤとボディをしっかりガタの無いように取り付けると走行性がおかしくなるものがある。例えば、子供達が使うローラースケートにおける、タイヤとスピンドルとのガタである。今はやりのインラインタイプではない、昔からあるタイヤが4個あるものでの話だ。

タイヤは、ゴムではなくプラスチックか木製。スピンドルとの間には玉押しボールベアリングが使われる。そして、取り付けナットはガタの調整が出来るようになっている。この堅いタイヤは、当然外乱をダイレクトに受けとめてしまう。

ある時、子供のローラースケートをいじっていた父親は、タイヤがガタガタで、ベアリングも油が切れていることを発見した。クルマのメンテナンスに自信のある父親は、そのローラースケートのベアリングアジャストナットを回し、ガタを完璧に取り、ベアリングにも適量のオイルを与え、音もなくスムーズにタイヤが回転するようにしてから、そのローラースケートを持って、子供と公園まで出かけた。

父親は、子供から「とても軽く走れて、スピードもでるし走りやすい」という言葉を期待していたのであるが、1周してきた彼からでた言葉は「とても走りづらくて、足首が疲れる」というものだった。

この状態から考えるに、つまりローラースケートのタイヤは、全ての外乱を処理できず、足に伝えてしまったのである。路面に散らばっている小さな石や凸凹は、ダイレクトにタイヤから伝わり、かつ子供の足の動きや荷重のかけ方が、そのままタイヤの向きを変えることになり、ローラースケートはあらぬ方向へ走り出すので、それを無理にコントロールしなければならず、ローラースケートは気持ちよくスイスイ走らないのだろう。

何が原因かは明らかである。父親が考え違いをしたのである。玉押しのボールベアリングに対して、いくらオイルを注したからと言って、ガタの無いようにしてしまったことが、乗りにくさにつながってしまったのだ。適度なベアリングに対するガタが、ローラースケートを快適に走らせる必要条件であったわけだが、ここで与えたガタはかなりの量で、結果としてみるとタイヤの幅に関係するものであった。

もちろん再調整後に、子供の笑顔が戻ってきたのは言うまでもない。これまで以上に快適になったかどうかは定かでないが、文句を言わなくなったことだけは確かである。

スーパーマーケットでもある現象を見た。それは篭を載せるお買い物カートにおいてである。ここに使われるタイヤは、自由に向きを変える自在キャスター付きのものが4個。このキャスターにトラブルが発生して、自由に向きが変わらなくなるとある問題が発生する。

スーパーマーケットの中のフロアはスリッピーであるし、非常に平らであるから、トラブルを抱えたキャスターでも、押して歩くことに対してそれほど問題が発生しない。多少力は必要になるが、無理をすれば自分の思っている方向へ移動することは可能である。

ところが駐車場に来ると事態は一変する。それまで何とかコントロールできたお買い物カートはとんでもない方角へ向かっていく。スーパーマーケットの中では片手でも、何の問題もなく押せていたものが、グリップのいいコンクリート路面となると、両手を使いしっかり向きを決めておかなければ、止めてある車に接触してしまう。とにかく勝手な方向へ進んでしまうのだ。

ここに使われているキャスター付きのタイヤは、その性質上キャスター角ゼロとして転がり、外乱をうまく処理している。正常に作用しているお買い物カー(カート)のタイヤを見れば、非常な勢いで首を振っていることが分かる。この首振りこそ外乱を処理している結果であるといえる。首を振らなくなったキャスター付きのカートは、外乱の処理が出来ないために、路面次第で勝手に向きを変えることになるのだ。

しかし、タイヤ経が少し大きくなったタイプで見ると、ほとんど首を振っていない。タイヤ幅は同じで外周にゴムを張ってある。当然キャスターゼロ(つまり直角)でもトレールは大きくなる。この部分が影響するのであろう。しかし、首の振り方が悪くなると、かなり悲惨な走り方となる。それは、いくら路面がフラットであっても、お買い物カートのコントロール性が非常に悪く、押して歩くことさえ大変となるのである。

2014年10月9日木曜日

本田エコマイレッジチャレンジの二輪車クラス車両規定が、2014年大会でやっとチグハグではなくなった


二輪車クラス(昨年までは市販車クラス)の規則は、下の文章のようなしっかりとしたもので、基本的に市販認定時の型式を変えてはいけない状態。

右の赤い文章が今年改正された車両規則。これで良いとはいえない。と言うのは、フレーム形式を変更しなければOKなので、アルミで同形式のものを作り、それで参加する、と言うようなことが起きそうだからだ。気軽に普段乗っているバイクで、燃費を争いましょう、と言う趣旨がおかしくなることは十分考えられると思う
 
全長、全幅、全高、シート高などの変更は認めない、というものだが、フェンダー前後やレッグシールドなどは取り外してもかまわない。

この取り外しが・・・で、それぞれ解釈が大きく違っていた。全長の変更はダメ、ということになっているが、一部のバイク以外、リヤフェンダーを取り外す(場合によっては切断)と全長が変わるのだが、それのおとがめはない。

諸元を重視するのか、取り外し項目を重視するのか、かなりいい加減な状態で車検が行われていた。

この状態で腹が立ったのは、2013年に見たもの。リムをアルミにしたチームのバイクを正式参加させない、という競技役員とのやり取り。公平を期するためというが、規則にはリムの材質変更を認めない、という項目はない。まして、認定時諸元に抵触することはないからだ。

公平を最優先するなら車両規則どおりにすべきであり、リヤフェンダーを取り外したり、切断して全長が短くなったバイクは、正式参加(燃費記録は参考値になる)させてはいけないはずだ。

これを正しい方向へするべきである、ということを競技委員長へ申し込みしておいたら、1年、間が開いて今年の車両規則で変更された。

今年は二輪車クラスの参加者が増えた。とても良いことだと思うが、行き当たりばったりでは無く、方向性をしっかりと決めた車両規則で、それを正しく運用しないと、趣旨がどこかへ行ってしまいそうだ
 
要するに、うるさいことは無くなり、大まかな車両規定になったのだ。これならタイヤサイズを変更しないでアルミリムの装着は可能であるし、シートを取り外したり、ハンドルの変更、全幅に関係するフットレストの取り外しなど、やりたい放題が可能となって楽しさ倍増!!!???。しかし、どのような形でも良いので、安全面からフットレストは装備させたほうが良いように思う。

2014年10月5日日曜日

本田エコマイレッジチャレンジ2014で見た、とんでもない光景


とんでもない光景とは、燃料であるガソリンが入る、ガラスの容器(主催者が用意する)のレベルを最終的に調整する、燃料微調整場所で練習走行日の土曜日に見たもの。

なんと、微調整で使用するガソリンが、オイルジョッキに入れられ、無造作にテーブル上に置かれているのだ。

運営組織が変わってからの燃料微調整場所。テーブルの上にボトルに注入するためのガソリンが、オイルジョッキに入れられ、無造作に置かれている。こうすることで、ボトルへの注入はやりやすいが、事故はその分起きやすい。作業性を優先するか、人命なのか、考える必要はないはず。この状態を運営組織が変わって最初のイベントで見つけられなかったのは、申し訳なかったのだが・・・でもこれ俺の仕事か~

もちろんこれが、密閉できる状態なら太陽の熱で暖められていないか、そのことは注意が必要だが、そうではなく、完全に開放状態。

誰かが、テーブルを突き飛ばしたとたん、そのオイルジョッキは落下し、周りにガソリンをぶちまける。隣ではエンジンを始動しているマシンもあるし、路面温度は高い、そこに工具でも落とそうなら、一巻の終わり。

火災になったとたん、周りの人は大慌てで、他のテーブルもひっくり返すことは目に見えているから、そこいらじゅうが火の海になる。

消火器は用意してあるが、常にそれを持っている人がいるわけではない。よって消火活動は出来ない。そこにいる全員が火だるまになるのは明らか。

そう考えたとたん、ぞっとすると同時に私は、その微調整エリアに近寄らないことを決めた。

直ぐに競技委員長へ電話を入れ(俺がやることではないのだが)、現場に来てもらい、状況を説明した。そして、現場のオフィシャルが言いうには「これまでの方法と変わっていません」。「昨年はテーブルの下にガソリンが入ったジョッキを置き、それを使っていましたが、誰かがそのジョッキを蹴飛ばし、こぼしたことがあったので、今年はテーブルの上に置いてます」。「運営組織が変わってから、同じ方法で、それまでのやり方は知りません」という返事。

あそ~ですか、で済ませるわけにはいかない。これでは事故が起きても当然であるし、起きないほうが不思議。起きなかったからラッキーは、イベントとして最低。

「何とかしたほうがいいよ」。ということを競技委員長に申し入れした結果、運営反省会で取り上げられ、決勝当日は燃料を注入するボトルへ給油する係りを決め、ガソリン携行缶からオイルジョッキへ移し、直ぐさまボトルへ注入。数多くのボトルが用意されていた。

ここまではよかったのだが、まだテーブルの上にはオイルジョッキにガソリンが入っている状態が見られた。これは、恐らく微調整で入れすぎたガソリンを抜く注射器が一杯になったものを、テーブルの上に無造作に載せられているオイルジョッキの中に放棄したものだろう。もちろん開放状態であった。

ガソリンの怖さを知らない人たちが、重要なポジションを支配していることに脅威を感じざるを得ない。

では、運営が変わる前の組織ではどうしていたのか、当時の運営関係者に聞いてみた。すると、やはり、当然、の答えが返ってきた。

「スポンサーとしてゼネラル石油をお願いしていたので、ガソリンの危険な取り扱いは、そのゼネラル石油から派遣されてくる方が携わっていた」「ゼネラル石油にしても、自分達がスポンサーしているイベントで何かあったら大変、という気持ちがあるため、確実にリスクは排除する方法を取っていた」「燃料微調整では、ガソリン携行缶に入れて必要な量を用意し、それをゼネラル石油のプロが、石油ポンプを使ってボトルに詰め、注射器で抜き取ったガソリンは、密封した容器に破棄する形をとっていた」

2005年、運営組織が変わる前の燃料微調整場所。オイルジョッキに入れたガソリンなど、どこにも見当たらない。それは当然、そのような安易な取り扱いをしていない。リスクを排除することは当然だからだ

これまで30回以上、この燃費競技会へは、いろいろな形の取材で訪れているが・・・

ガソリンの危険を知らない、或いは大丈夫、という安易な気持ちが、このようなやり方で進行していたようだ。

「燃料微調整場所で、タバコをすったり、テロ行為をするやつなんかいない」という気持ちは正しいと思うが、意図的ではないところで起きる事故、それを想定できないのは最低であると感じた。

2014年10月1日水曜日

不定期連載 数式を使わない、クルマの走行安定性の話・2/17

このレポートは、最初のタイトルを「数式を使わないサスペンションの話」ということでまとめていたが、結論からすると、サスペンションではなく、走行安定性になるので、タイトルを現在のものに変更した。(以後割愛)

内容は筆者が携わってきたバイクやクルマいじり、それ以外にも改良から製作、はたまた、各分野の技術者から得たヒントを織り交ぜ、経験などを加えて自分流にまとめたもの。数十年前に書いた部分もあるので、今では「化石」状態の部分も。面白い読み物、ぐらいの感じで目を通してほしい。(以後割愛)

 ミシュランXがノーパンクタイヤ!!?

ヨーロッパ車の事故車におけるボディ修整に求められる精度では、日本車のような高い修整精度を要求していない、と言うことは最初にも書いたが、その点については、日本の高性能ボディ修整機がヨーロッパでは必要とされないので、引き合いがない、とあるボディ修整機を売るメーカーが、フランクフルトで行われたアウトメカニカで話していたことを思い出した。

これはいったいなぜなのだろうか。アウトバーンのあるドイツでの話である。ボディ修整に精度がそれほど要求されないと言うことは、サスペンションパーツの取り付け点精度もそれに準じることになる。ということはそれよりも重要な部分で、クルマの走行安定性が保たれているということか?

日本車のように高いボディ修整を要求しない現実。つまり、タイヤをきちんと設計どおりに動かさなくては、走行安定性を得られない、と勘違いしているクルマメーカーのエンジニアが造った日本車に対して、如何にして、勝手に向きを変えようとするタイヤをコントロールするかが、挙動安定性に関係する、ということを重要視しているのがヨーロッパ車であると見ている。

クルマは路面からの不規則なタイヤの動きを、ボディに伝えないような設計とすることで、横風にも強くなる。というのは、タイヤはあるきっかけで(常に外乱を求めている)勝手に、自分の好きな方向へ行こうとするから、ある程度タイヤそのものを、遊ばせておく必要がある。この“いなし方”が難しいのである。

そのヒントとして前後左右のタイヤが、クルマの操縦安定性に対し、互いに頼らないような設計とすること、は重要なポイントではなかろうか。

また、なぜバイアスタイヤからラジアルタイヤに交換することで、それまでどうしようもなくハンドルを取られていたクルマが、安定して走るようになるのだろうか。その答えは、ラジアルタイヤは、路面からの外乱を受け付けない特性を持っているからだが、その素晴らしい特性に頼ったクルマ造りが考え物である。

日本のクルマメーカーは、ひとつのチャンスを無駄にしてしまった。というのは、1960年後半から始まったクルマの大衆化で、操縦安定性が問題になり始めた。それは、フロントサスペンションを独立懸架とするなどの他、クルマを小型軽量化したことによって発生する、ごく当然の結果であったのだが、それに対する回答は出せなかった。試行錯誤しているところへミシュランが1949年に開発していたラジアルタイヤに着目。

当時は、スチールベルトの入ったこのミシュランX(定かではないが1965年ごろから輸入され始めた)を、そのスチールベルトによって、刺さった釘が、タイヤをパンクさせない、ノーパンクタイヤである、というキャッチフレーズで販売されていたし、そのための見本として、輪切りにされたタイヤに刺さる釘は、見事?に突き抜けていなかった。

チューブレスであるが、当時はそれに対応出来るホイールもなく、チューブを入れて使用するなど、本来あるラジアルタイヤの性能は、完全に無視されていたわけである。それほど、タイヤに対する認識度がなかった。

しかし、日本のクルマメーカーは、このラジアルタイヤに目を付けた。ミシュランタイヤの技術者のレポートをまじめに読み、自分たちのクルマに、そのラジアルを取り付けたに違いない。そして、問題になっていた操縦安定性の悪さが、なくなっていたことにびっくりし、ひとつの結論を出した。それは「タイヤが悪い」、というものだった。

サスペンション・ジオメトリーとボディ剛性については考えていたが、それはあくまでもスタティックな状態での計算で、動的なものではなかったから、いざ動かしてみると、問題が出てくる。その問題となる種がどこに存在するのか、はたまた、その種はどのようなことに発展するのか、殆ど分かっていなかったように思われる。

カマボコ道路を走行すれば中央方向(右)にハンドルは取られ、それが不規則に連続する道路では、安心してハンドルを握っていられない状態が続く。これが何故起きるのか、分かっていれば、ある程度解決の策はあったのだが、そこに到着する前にミシュランのタイヤが登場した。

では、何故カマボコ道路ではハンドルが取られるのかと言うと、それはキャンバースラストが強く発生するからである。サスペンションが作動することによって、あるいは作動しなくても、その路面形状になれば、アライメント(静的も動的も)の変化でキャンバーが変化し、それに合わせてトーの変化が出る。これを無視してサスペンションやボディを設計すると(当時は見よう見まねで設計していたから、本質を理解していない)、バイアスタイヤではトレッドが路面形状に合わせて接するため、タイヤの周長が変わり、短い周長(直径が小さい)方向へタイヤは移動しようとするが、そこへ更にトーが加わると、これこそキャンバースラストとなり、強い力でクルマの向きを変える。それも、左右のタイヤで勝手に突如として発生するから、走行性は最悪になる。

キャンバースラストとは、バイクや自転車のコーナリングで発生し、これがないとコーナリングは出来ない。絶対に必要なものなのだが、バイクや自転車では必要でも、クルマではいらない力となる。これを発生させないようにサスペンションとそれを取り付けるメンバー、ボディなど総合的に造らないと、安定性の高いクルマはできない。

2014年9月20日土曜日

不定期連載 数式を使わない、クルマの走行安定性の話・1/17


このレポートは、最初のタイトルを「数式を使わないサスペンションの話」ということでまとめていたが、結論からすると、サスペンションではなく、走行安定性になるので、タイトルを現在のものに変更した。

内容は筆者が携わってきたバイクやクルマいじり、それ以外にも改良から製作、はたまた、各分野の技術者から得たヒントを織り交ぜ、経験などを加えて自分流にまとめたもの。数十年前に書いた部分もあるので、今では「化石」状態の部分も。面白い読み物、ぐらいの感じで目を通してほしい。

 
昼になったから食事に行こう

走行安定性を分析するのは、エンジンよりも難しい。いくらコンピューターが優れている時代になっても、解析をするための用件が多すぎるからだ。サスペンションだけではなく、取り付けられるメンバーやボディ形状、剛性まで関係してくる。難しい公式など、いくら紐解いても、さらに難しい領域に入り込むばかりで、少しも理解出来なくなる。

また、公式を列記しても、計算上では解析出来るが、実際とは大きく違う。そのあたりのことについて、クルマメーカーのエンジニア達は十分理解しているのだ。そこで、読めば何となくわかるような気がするレポートとして、「数式を使わない、クルマの走行安定性の話」をまとめてみた

話は数10年前にさかのぼるが、ヨーロッパにおけるヨーロッパ車のボディ修整では、特にサスペンションの取り付け部分に対して、日本車のように高い取り付け位置の精度を要求されていない、ということを聞いた。

これはつまり、タイヤをきちんと、設計値どおりのジオメトリーで動かさなくてもクルマの安定性が保てる、というひとつの現れだろう。対して、日本車は限りなく設計値どおりに動かすことを目標に、ボディ修整を要求されていた。しかし、ここにはボディ剛性とサスペンション設計、ゴム・ブッシュの使い方の違いによる、考え方が大きく関係しているように思えた。

考えるにヨーロッパ車は、如何に自由にタイヤの動きを使いながら、それをコントロールすることが重要である、に開発・設計のポイントが置かれているような気がしてならない。

ヨーロッパにおける、優れたクルマ造り(この場合デザインは含まない)をするメーカーは、サスペンションをどのように作ればいいか、ということがわかっているとも取れる。

取り付け点の位置、サスペンション剛性とボディ剛性の関係、しなやかに外乱を処理するために採用するゴム・ブッシュの使い方など、当然のことをデータとして持っている。そのために、新型車を作るときでも、サスペンション設計に必要以上の時間はかからない。もちろん、実験においても同様であり、開発実験ではなく、確認実験であるかのようだ。

それに引きかえ1980年代の日本車は、どのようにサスペンションを作ったらいいのかわかっていなかった。クルマ毎にサスペンション型式を変え、絶対寸法まで変えてしまうわけだから、新型車を開発する度に、全てのデータがゼロからスタートすることになり、同じ過ちを繰り返すこともある。ところが同じディメンジョンとジオメトリーのサスペンションを使い続けることで、問題点を克服できることもある。もちろん何が問題なのかが分かってなければダメだが。

ヨーロッパ車も日本車も目標とする走行性は変わらない、と考えていいが、設計の段階からどう作ればこのクルマはこうなる、ということがほぼわかっていると思われるのに対して、日本車は作ってみるまでわからない。つまり何をどうしたらどうなるのかが、皆目分かっていなかった時代だった。

面白い例えとしてこう考えた、ヨーロッパ車の場合は、「昼になったから、食事に行こう」。それに対して日本車は「昼か、はらがへった、どうしたらいいのか」と、研究員達がディスカッションして、「これは、どうやら食事に行かなければいかんのだ」というような結論をだす。ただし、ここに出す結論が食事になるか、食料品の買い出しか決まっていない。

外乱をうまく処理し、安定してドライバーとの対話が出来るサスペンションとするには、確かな剛性を持つボディと、同様に優れた剛性を持つサスペンションに関わる全てのパーツ、ゴム(ピロー)・ブッシュの使い方、そして、サスペンションのデザイン、つまりジオメトリーをどうするかである。更に重要なのは、その動的作動の軌跡が、設計値に限りなく近くなるかどうかだ。

以下、不定期で次号

2014年9月13日土曜日

新しいエネルギーが加わりバージョンアップされたスズキ・ワゴンR


ワゴンRがハイブリッド仕様になって登場した、といっても過言ではないシステムを搭載してきた。それは、オルタネーターをモーターにも使う、マイルドハイブリッド方式の採用。ニッサンセレナでは一部の仕様ですでに確立させているが、軽自動車となると、どこのメーカーも「只今考え中・・・」で止まっていた。さすが先を行くスズキ(ゴマ摺りではない)、それをやってのけた。


スティングレーに試乗。明らかに、軽自動車の高級モデル、と言える部類だが、価格が気になるところ

それまでも、エネチャージという名称で、減速時を重点にオルタネーターの発電を、搭載するリチウムイオンバッテリーや鉛バッテリーへ蓄える方式により、加速時のオルタネーター負荷を低減。それによってエンジンの駆動効率を高めて、燃費と動力性能を引き上げていた。

このシステムを更にバージョンアップしたのが、今回のS-エネチャージである。オルタネーターをスターターモーターにも使うことにより、アイドリングストップからの再始動では、セルモーターのピニオンギヤとリンクギヤ、更にギヤからの唸り音など、不快な音がなくなることで、非常にドレッシーなアイドリングストップを実現することとなった。

そして、そのモーター(12V1.6kW)を加速時のアシストに使用し、動力性能をアップするのではなく、燃費アップの方向へ使ったのである。そのことが非常に評価できる。

つまりアシスト力(リチウムイオンバッテリーの電力を使用)をプラスして、中速域の加速性能を大きく高めるには、このモーター特性では能力不足(基本的に小さすぎる。それ以上を求めるにはエンジンルーム内のスペースとコストが問題)。


S-エネチャージシステムは、これから他の機種へも採用する

最大トルクが大きくエンジン始動にも使える能力を持っていても、それがそのまま高回転まで持続しないのがモーターであり、アイドルストップからの始動用として、その性能を発揮させるとしたら、今の状態では両方がうまくいかない。

アシストモーターとしての実力は3000回転で4Nm(50ccバイク並み。プーリー比で見ると1/2ほど減速するので、中速域のアシスト用としては実用性が乏しい)という話であるし、モーターばかりではなく、バッテリーに対しても同様なことは言える。


ベルトは専用としたため2本使用。ISGベルトは強い駆動が加わることから、テンショナーはこれまでとは逆の位置に取り付けている

使用する部品の共通化は当然であり、その中で最大に効率を追求する。その結果、鉛バッテリー(最初の始動ではセルモーターを回し、アイドルストップからの再始動ではISGに電力を与える)とリチウムイオンバッテリーは、これまでのエネチャージシステムと同じもの、ただし、制御系が大きく違い、最大電流値も違うことから、それに耐えるものを新しく開発した。

このオルタネーター・モーターには、インバーターが組み込まれているので、部品として購入すると自作EV用に使える??と考えたのは間違いではないと思うが。

オルタネーターをアイドリングストップからの再始動用モーターとして使うと、その穏やかな始動状態に感動する。雑音がないからである。

更に良いところは、クランキングスピードがセルモーターで回したときの300回転から600回転となることで、走り出すまでのタイムロスを考えた場合、初速が速いことから、エンジン再始動と同時にアイドル回転を大きく立ち上げる必要もない。結果的に穏やかな感じが強くなる。

また、S-エネチャージでも走行中からアクセルを離して停止まで持ってくると、時速13キロほどでエンジン回転計は仕事をやめて、いきなりゼロを指すが、エネチャージを採用したばかりのときのワゴンRと違って、突き出し感(減速の強さが途中から少ないほうへ変化することで起きる)は発生しない。

これは、CVTと副変速機の制御を改良した結果で、同社のハスラー試乗のときに感じたため、開発者にそれとなく聞いてみると「実は、ワゴンRのマイナーチェンジから変更しています」とのこと。

何が変わったのかは、五感を研ぎ澄まして運転するとわかる。

エンジン回転計がゼロを指すか指さないうちに、エンジンからの唸り音と振動を感じる。つまりエンジン回転が上がり始め、エンジンブレーキを効果的に作用させながら、突き出しを発生しない状態を作り出しいるのである。

副変速機とCVTとのやり取りで、一番難しいのは副変速機のギヤをハイからローへダウンシフトして、スムーズにエンジンブレーキ状態を停止寸前まで持っていくことである。

突き出し感があったときには、CVTを最大にローレシオとし、そこまでは効果的に減速させるのだが、副変速機はハイギヤのまま。そのまま停止までやろうとすると、エンジンの回転はとんでもなく低くなってしまい、例えばその状態で再始動が要求されても、トルクコンバーターのロックアップを外し、そしてクランクをまわしての再始動は、どう見ても時間差が多くなって思わしくない。

それでは減速の途中でハイギヤからローギヤへダウンシフトしたらどうなるか。その切り替えを瞬時に行う必要があり、結果として、大きなショックが常に発生してしまう。もちろんトルクコンバーターのロックアップはされた状態でないと突き出し感が出てしまうので、そう簡単な話ではない。

これまでは副変速機をハイギヤのまま、トルクコンバーターのロックアップクラッチを切り離さなければならず、その結果、突き出し感が発生してしまっていたのだ。

それを排除するためには、乗員が違和感を感じないうちに副変速機のギヤをハイからローにシフトすればいいのだが、それがなかなか難しい。でも、スズキはそれをやってのけた。

副変速機をハイからローへシフトしたときにショックを感じないようにすれば良いわけだから、トルクコンバーターのロックアップクラッチを滑らせながら、副変速機のシフトを行うように改良。

ロックアップクラッチが滑っている最中(つまり半クラッチ状態)であれば、副変速機のギヤをハイからローへダウンシフトしてもショックは感じないのだ。ローギヤへのシフトが終了したら、エンジン回転がスムーズに上がるよう、素早くスムーズにロックアップを開始する。ただこれだけのことだが、それの見極めが非常に難しい。

これにより、エンジン回転計が動きを止めても、クランクシャフトは回り続けており、その最中にダウンシフトするので、ショックを感じさせないのだ。エンジン回転計が常に動くような造り方をすれば、ハッキリとわかるのだがな~。


アイドリングストップしている最中の不用意な再始動を防ぐため、ブレーキペダルのにストロークセンサーを取り付けた。これにより、より快適なアイドルストップは、更に安定した

アイドリングストップでも進化が見られた。それは、不用意な再始動を誘発しない制御を加えたこと。何が加わったのかというと、ブレーキペダルにストロークセンサーを取り付け、ペダル位置が決まった高さに戻らないと再始動しないというもの。これで、アイドリングストップした直後に、いきなり再始動したり、再始動したと思ったらストップしたり、などという、チグハグな行動はなくなった。

2014年9月6日土曜日

BMWのX4カタログに出ていた、奇妙なクランクシャフト


BMWが新発売したX4のカタログをしげしげと見ていて、4気筒エンジンなのに見たこともない形のクランクシャフト写真に、目が釘付けとなった。

 
カタログ写真なので、正確に判断するのは難しいが、それでもこれまでの直列4気筒クランクとは明らかに違う

これまでの4気筒クランクシャフトであれば、クランクピンの位置は1番と4番、2番と3番が一緒で180度ずれた位置にある。

しかし、どう見てもそのような造りではない。1番と2番、3番と4番が同じ位置にある。更によく観察すると、その1番と2番(3番、4番も)なんとなく位置(角度)が違うような感じも見える。

これもしかして270度クランク?


270度クランクを採用しているクルマは聞いたことがない。バイクではヤマハが10年以上前からこの270度クランクを市販の2気筒や排気量の大きな4気筒(YZF-R1)に採用し、ロードレースの最高峰であるモトGPマシンにもこの270度クランクを採用。ホンダも2気筒バイクのNC700,750には、この270度クランクを採用した。

2011年東京モーターショーに展示された、ヤマハ・モトGPマシンのクランクシャフト。4気筒なのにクロスプレーン型クランク。つまり、クランクピンの位置は90度づつずれた270度クランクとなる
 
では、なぜ不等間隔燃焼となる270度クランクを採用するのだろうか。ヤマハのサイトにはその理由が書かれているので、すでにご存知の方もいるだろう。

性能アップが目的ではなく、高回転まで回したときの素直さ、スムーズさを狙ったとか。それにより、ライダーは高回転を楽しめるので、余裕が出るからだという。

レースのマシンではそれが当然だが、ストリートバイクではどのような利点があるのだろうか。それは、燃焼による鼓動が低速から中速に掛けて味わえるからで、バイクを乗る人間の気持ちに訴える十分な要素を持つ。

確かに、2気筒であると時速100キロからの追い越し加速でも、しっかりと鼓動を感じさせる挙動が見えるのだ。

では、何故そのようなことになるかというと、それは、クランクシャフトの回転位置がどこにあっても、必ず動いているピストンが存在することに要因があるという。3気筒や6気筒では当然のことだが。

普通に180度クランク構造では、上死点、下死点は全てのピストンが同時になるため、必ず停止する状態が出てくる。しかし、270度クランクとすれば、常にどのピストンかは動いており、それが気持ちよさにつながるのである。

こう考えると、2リッター4気筒ターボのX4(それ以前から?)は、とにかくエンジンがスムーズで、とても4気筒とは思えない静けさがあるのはうなずけるのだが。

燃焼間隔が乱れるため、自然吸気エンジンであると重要な、排気脈動を使う性能アップは無理だが、ターボが装備されているので、それも関係ない。

6気筒仕様もあるため、4気筒2リッターであると、エンジンルームの換気性能は高い。更に鼻が軽いため、普通に走らせる中でも、楽しさが味わえる

アイドリング中にマフラー出口で排気音を聞いてみたが、ターボにかき回されるので、特別な音ではなかった。

この点について、日本のBMW広報へ聞いてみたが???という感じ。何故何故問答は、BMWのエンジン開発担当でもなければ無理かもしれないな。でも知りたい。日本の自動車メーカーのエンジン開発担当は、このようなことを知り尽くしているのだろうか。
新型X4。SUVとハッチバックセダンを融合させたような感じ。走行性は非常に自然で、かつ気持ちがいい。この感じでセダンを作って欲しいと思ったのは、私だけではないだろう